МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ТАГИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДАЮ
на заседании РМО учителей физики. Протокол № 1	Заместитель директора школы Махмудова С.П.	Директор школы Малеева Н.Д.
от « 17 » ох 2018 г. Рук. РМО же Куприянов И.В.	« <u>28</u> » og 201 <u>8</u> г.	Приказ № <u>140</u> от « <u>25</u> » <u>0х</u> 201 <u>8</u> г.

рабочаяпрограмма по физике

7-9 классы

(ΦΓΟС ΟΟΟ)

Составитель: учитель физики Куприянов И.В.

Рабочая программа разработана на основе следующих документов:

- Федеральный государственный образовательный стандарт основного общего образования (в ред. от 31.12.2015);
- Примерная основная образовательная программа основного общего образования;
- Рабочая программа к линии УМК А. В. Перышкина, Е. М. Гутник: Физика. 7—9 классы

/ H. В. Филонович, Е. М. Гутник. — M.: Дрофа, 2017/

Рабочая программа ориентирована на использование учебно-методического комплекта по физике А.В. Перышкина системы «Вертикаль»:

- 1. А.В. Пёрышкин, «Физика 7 класс», М., «Дрофа», 2013г.
- 2. А.В. Пёрышкин, «Физика 8 класс», М., «Дрофа», 2013г.
- 3. А.В. Пёрышкин, Гутник Е.М., «Физика 9 класс», М., «Дрофа»,2014г.

Программа рассчитана на 68 час/год (2 час/нед.) в 7 и 8 классах и на 102 час/год (3 час/нед.) в 9 классе.

Результаты освоения курса

Личностными результатами обучения физике в основной школе являются: сформированность познавательных интересов на основе развития интеллектуальных и творческих

способностей учащихся; убеждённость в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры; самостоятельность в приобретении новых знаний и практических умений;

готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями; мотивация образовательной деятельности школьников на основе личностно-ориентированного

подхода; формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений,

результатам обучения.

Метапредметными результатами обучения физике в основной школе являются: овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий; понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений; формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его; приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием

различных источников и новых информационных технологий для решения познавательных задач; развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение; освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами

решения проблем; формирование умений работать в группе с выполнением различных социальных ролей, представлять

и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты

Выпускник научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

- понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учётом заданной точности измерений;
- анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.

Выпускник получит возможность научиться:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и её вклад в улучшение качества жизни;
- использовать приёмы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закреплённую ось вращения, колебательное движение, резонанс, волновое движение (звук);
 - описывать изученные свойства тел и механические явления, используя физические величины:

путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

• анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомномолекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твёрдых тел;
 - приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоёмкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

• использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;

- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические и магнитные явления

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
 - приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчёты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приёмы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α -, β и γ -излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счётчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
 - понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;
- различать основные характеристики звёзд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
 - различать гипотезы о происхождении Солнечной системы.

СОДЕРЖАНИЕ КУРСА

7 класс (68 ч, 2 ч в неделю)

Физика и её роль в познании окружающего мира (4 ч)

Физика — наука о природе. Физические явления, вещество, тело, материя. Физические свойства тел. Научный метод познания. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы.

Физические величины и их измерение. Простейшие измерительные приборы. Цена деления шкалы прибора. Нахождение погрешности измерения. Международная система единиц.

Физика и техника. Современные достижения науки. Роль физики и учёных нашей страны в развитии технического прогресса.

Лабораторная работа

1. Определение цены деления измерительного прибора.

Первоначальные сведения о строении вещества (6 ч)

Представления о строении вещества. Опыты, подтверждающие, что все вещества состоят из отдельных частиц. Молекула — мельчайшая частица вещества. Размеры молекул. Тепловое движение атомов и молекул.

Броуновское движение. Диффузия в газах, жидкостях и твёрдых телах. Связь скорости диффузии и температуры тела. Взаимодействие частиц вещества. Явление смачивания и несмачивания тел.

Агрегатные состояния вещества. Модели строения твёрдых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твёрдых тел на основе молекулярно-кинетических представлений.

Лабораторная работа

2. Определение размеров малых тел. Взаимодействия тел (23 ч)

Механическое движение. Траектория. Путь. Основные единицы пути в СИ. Равномерное и неравномерное движение. Относительность движения.

Скорость равномерного и неравномерного движения. Векторные и скалярные физические величины. Определение скорости. Графики зависимости пути и модуля скорости от времени движения.

Определение пути, пройденного телом при равномерном движении, по формуле и с помощью графиков. Нахождение времени движения тел.

Явление инерции. Проявление явления инерции в быту и технике. Изменение скорости тел при взаимодействии. Масса. Масса — мера инертности тела. Инертность — свойство тела. Измерение массы тела. Плотность вещества. Изменение плотности одного и того же вещества в зависимости от его агрегатного состояния. Определение массы тела по его объёму и плотности, объёма тела по его массе и плотности.

Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Отличие веса тела от силы тяжести. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил, её графическое изображение. Сила трения. Измерение силы трения скольжения. Сравнение силы трения скольжения с силой трения качения. Трение покоя. Трение в природе и технике. Способы увеличения и уменьшения трения.

Лабораторные работы

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объёма тела.
- 5. Определение плотности твёрдого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Измерение силы трения с помощью динамометра. (Выяснение зависимости силы трения скольжения от площади соприкасающихся тел и прижимающей силы.)

Давление твёрдых тел, жидкостей и газов (21 ч)

Давление. Давление твёрдых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов. Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Устройство и действие шлюза.

Вес воздуха. Атмосферное давление. Методы измерения атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах.

Устройство и принцип действия открытого жидкостного и металлического манометров. Гидравлические механизмы (пресс, насос).

Причины возникновения выталкивающей силы. Закон Архимеда. Условия плавания тел. Плавание судов. Воздухоплавание.

Лабораторные работы

- 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 9. Выяснение условий плавания тела в жидкости. Работа и мощность. Энергия (13 ч)

Механическая работа. Мощность. Простые механизмы. Условия равновесия рычага. Момент силы. Правило моментов. Подвижный и неподвижный блоки. «Золотое правило» механики. Центр тяжести тела. Условия равновесия тел.

Коэффициент полезного действия (КПД). Определение КПД наклонной плоскости. Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

Лабораторные работы

- 10. Выяснение условия равновесия рычага.
- 11. Определение КПД при подъёме тела по наклонной плоскости.

Повторение (1 ч)

8 класс (68 ч, 2 ч в неделю)

Тепловые явления (23 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоёмкость. Расчёт количества теплоты при теплообмене. Энергия топлива. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах.

Агрегатные состояния вещества. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Насыщенный и ненасыщенный пар. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Влажность воздуха. Точка росы. Способы определения влажности воздуха.

Работа газа при расширении. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Лабораторные работы

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2. Определение удельной теплоёмкости твёрдого тела.
- 3. Определение влажности воздуха.

Электрические явления (29 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Электрическое поле. Делимость электрического заряда. Электрон. Строение атома. Строение ядра атома. Нейтроны. Протоны. Ионы. Объяснение на основе знаний о строении атома электризации тел при соприкосновении, передаче части электрического заряда от одного тела к другому. Закон сохранения электрического заряда. Проводники, диэлектрики и полупроводники.

Действие электрического поля на электрические заряды. Электрический ток. Источники тока. Электрическая цепь. Природа электрического тока в металлах. Скорость распространения электрического тока в проводнике. Действия электрического тока. Направление электрического тока. Сила тока. Электрическое напряжение. Электрическое сопротивление.

Зависимость силы тока от напряжения. Закон Ома для участка цепи. Соотношение между сопротивлением проводника, его длиной и площадью поперечного сечения. Удельное сопротивление. Реостаты. Последовательное и параллельное соединение проводников.

Работа и мощность электрического тока. Формула для вычисления работы электрического тока через мощность и время. Единицы работы тока, используемые на практике. Расчёт стоимости израсходованной электроэнергии. Закон Джоуля—Ленца. Конденсатор. Электроёмкость конденсатора. Энергия электрического поля конденсатора. Электрические нагревательные и осветительные приборы. Короткое замыкание. Правила безопасности при работе с электроприборами.

Лабораторные работы

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Регулирование силы тока реостатом.
- 7. Измерение сопротивления проводника при помощи амперметра и вольтметра.
- 8. Измерение мощности и работы тока в электрической лампе. Электромагнитные явления (5 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Электромагниты и их применение. Постоянные магниты. Магнитное поле постоянных магнитов.

Взаимодействие магнитов. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электрический двигатель.

Лабораторные работы

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Световые явления (11 ч)

Источники света. Прямолинейное распространение света. Образование тени и полутени. Солнечное и лунное затмения. Видимое движение светил. Закон отражения света. Плоское зеркало. Построение изображения предмета в плоском зеркале. Закон преломления света. Линзы. Фокусное расстояние и оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система.

Лабораторная работа

11. Получение изображения при помощи линзы.

9 класс (102 ч, 3 ч в неделю)

Законы взаимодействия и движения (34 ч)

Механическое движение. Материальная точка как модель физического тела. Критерии замены тела материальной точкой. Поступательное движение. Система отсчёта. Перемещение. Различие между понятиями «путь» и «перемещение». Нахождение координаты тела по его начальной координате и проекции вектора перемещения. Перемещение при прямолинейном равномерном движении. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение. Скорость прямолинейного равноускоренного движения. График скорости. Перемещение при прямолинейном равноускоренном движении. Закономерности, присущие прямолинейному равноускоренному движению без начальной скорости. Относительность траектории, перемещения, пути, скорости. Геоцентрическая и гелиоцентрическая системы мира. Причина смены дня и ночи на Земле (в гелиоцентрической системе).

Первый закон Ньютона и инерция. Инерциальные системы отсчёта. Масса тела. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Ускорение свободного падения. Движение тела, брошенного вертикально вверх. Невесомость. Закон всемирного тяготения и условия его применимости. Гравитационная постоянная. Ускорение свободного падения на Земле и других небесных телах. Зависимость ускорения свободного падения от широты места и высоты над Землёй. Сила упругости. Закон Гука. Сила трения. Виды трения: трение покоя, трение скольжения, трение качения. Формула для расчёта силы трения скольжения. Примеры полезного проявления трения.

Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Искусственные спутники Земли. Первая космическая скорость.

Импульс тела. Замкнутая система тел. Изменение импульсов тел при их взаимодействии. Закон сохранения импульса. Сущность и примеры реактивного движения. Назначение, конструкция и принцип действия ракеты. Многоступенчатые ракеты. Работа силы. Работа силы тяжести и силы упругости. Потенциальная энергия. Кинетическая энергия. Теорема об изменении кинетической энергии. Закон сохранения механической энергии.

Лабораторные работы

- 1. Исследование равноускоренного движения без начальной скорости.
- 2. Измерение ускорения свободного падения.

Механические колебания и волны. Звук (15 ч)

Механические колебания. Свободные колебания, колебательные системы, маятник. Период, частота, амплитуда, фаза колебаний. Зависимость периода и частоты маятника от длины его нити. *Гармонические колебания*. Затухающие колебания. Вынужденные колебания. Резонанс.

Механические волны в однородных средах. Поперечные и продольные упругие волны. Длина волны. Связь длины волны со скоростью её распространения и периодом (частотой). Звук как механическая волна. Громкость и высота тона звука. Тембр звука. Отражение звука. Эхо. Звуковой резонанс.

Лабораторная работа

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Электромагнитное поле (25 ч)

Однородное и неоднородное магнитное поле. Правило буравчика. Действие магнитного поля на проводник с током и на движущуюся заряженную частицу. Правило левой руки. Индукция магнитного поля.

Модуль и направление вектора магнитной индукции. Линии магнитной индукции. Магнитный поток. Явление электромагнитной индукция. Опыты Фарадея. Правило Ленца. Явления самоиндукции.

Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Назначение, устройство и принцип действия трансформатора. Передача электроэнергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

Электромагнитная природа света. Скорость света. Фотоны, энергия фотонов. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Квантовый характер поглощения и испускания света атомами. Объяснение излучения и поглощения света атомами и происхождения линейчатых спектров на основе постулатов Бора. Спектральный анализ.

Лабораторные работы

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного и линейчатых спектров испускания.

Строение атома и атомного ядра (20 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Планетарная модель атома.

Методы наблюдения и регистрации частиц в ядерной физике.

Протонно-нейтронная модель ядра. Ядерные силы. Физический смысл зарядового и массового чисел. Радиоактивные превращения атомных ядер. Ядерные реакции. Сохранение зарядового и массового чисел при ядерных реакциях. Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы.

Термоядерная реакция. Источники энергии Солнца и звёзд. Перспективы использования управляемого термоядерного синтеза.

Лабораторные работы

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8. Изучение треков заряженных частиц по готовым фотографиям (выполняется дома).

Строение и эволюция Вселенной (5 ч)

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.

Итоговое повторение (3 ч)

Тематическое планирование

7 класс

Темы	Количество
	часов
Физика и её роль в познании окружающего мира.	4
Первоначальные сведения о строении вещества.	6
Взаимодействие тел.	23
Давление твёрдых тел, жидкостей и газов.	21
Работа и мощность. Энергия.	14
Итого	68

8 класс

Темы	Количество
	часов
Тепловые явления.	23
Электрические явления.	29
Электромагнитные явления.	5
Световые явления.	11
Итого	68

9 класс

Темы	Количество
	часов
Законы взаимодействия и движения.	34
Механические колебания и волны. Звук.	15
Электромагнитное поле.	25
Строение атома и атомного ядра.	20
Строение и эволюция Вселенной.	5
Повторение.	3
Итого	102